Spatial Ensemble Learning for House Price Prediction

Shonosuke Sugasawa (Faculty of Economics, Keio University)

CREI International Forum

Real Estate Price Prediction by Al

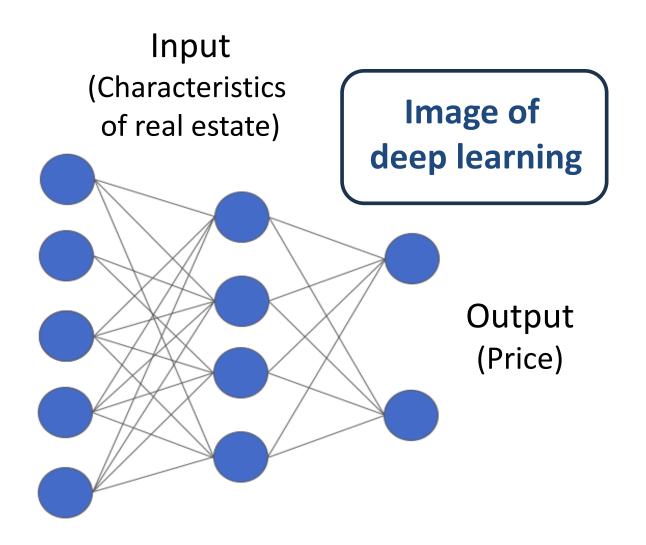
- (Existing) AI technology for evaluating real estate price
 - Learning underlying structures based on large-scale data
 - \Rightarrow Predict price of new real estate

• Advantage

High prediction accuracy can be achieved.

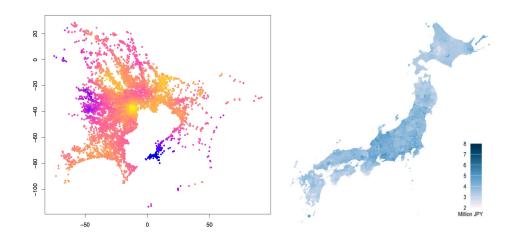
• Disadvantage

- Prediction mechanism is too complex to understand.
- It does not take account of spatial information.



Spatio-temporal data

- Spatio-temporal data
 - Real estate data is observed over space and time
 - ⇒ Spatio-temporal data
 - Key characteristics:
 - Spatial correlation / spatial heterogeneity
 - Temporal trend
- (Typical) machine learning (AI) algorithm
 - Assuming independence between observations
 - ⇒ Need (probabilistic) statistical models handling spatio-temporal correlation
- Advantages of statistical models (e.g. hedonic models) for prediction
 - We can obtain point prediction as well as uncertainty information
 - They tend to be more interpretable than machine learning algorithm (e.g. neural network)

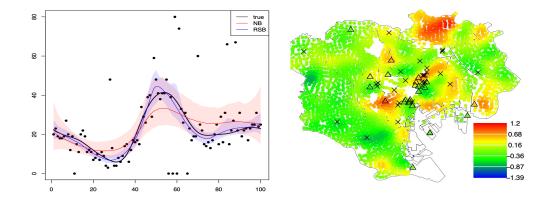


Prediction synthesis: Background

There are variety of statistical models...

- Hedonic models (linear regression)
- Additive models
- Spatial regression

etc

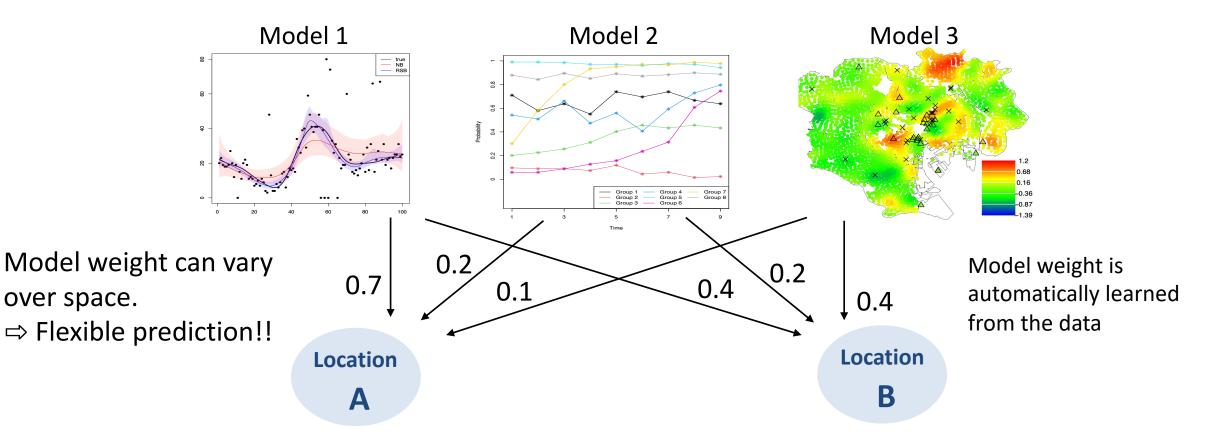


Question: Which models should we use for prediction?

Answer: Combine all the models to get better prediction!

Spatial Ensemble Learning

Combine multiple (whitebox) models (Extension of existing ensemble learning to handle spatial data)



Bayesian Spatial Predictive Synthesis (BSPS)

General form of Bayesian predictive synthesis

Prediction models at site s

$$p(y(s) \mid \Phi(s), F(s)) = \int lpha(y(s) \mid F(s), \Phi(s)) \prod_{j=1}^J h_j(f_j(s)) \mathrm{d} f_j(s)$$

Apply the idea of BPS to spatial prediction!

T

Spatially varying coefficient model (for continuous response)

$$egin{aligned} y(s) &= eta_0(s) + \sum_{j=1}^J eta_j(s) f_j(s) + arepsilon(s), \quad arepsilon(s) \sim Nig(0,\sigma^2ig) \ eta_j(s) &\sim \mathrm{GP}(au_j,h_j), \quad ext{independently for } j = 0,1,\ldots,J \end{aligned}$$

The model weight can vary over space (Significant difference from existing ensemble methods)

BSPS: learning

- Settings (sampled data)
 - $-s_1, \dots, s_n \in S$: sampled locations

- Simplified notation: $y_i = y(s_i)$, $f_{ji} = f_j(s_i)$, $\varepsilon_i = \varepsilon(s_i)$, $\beta_{ji} = \beta_j(s_i)$

- Synthesis model for sampled data

$$egin{aligned} y_i &= eta_{0i} + \sum_{j=1}^J eta_{ji} f_{ji} + arepsilon_i, \quad arepsilon_i &= 1, \dots, n \ eta_j &\equiv (eta_{j1}, \dots, eta_{jn})^ op \sim N(0, au_j H(h_j)), \quad j = 0, \dots, J \ &- ig(H(h_j)ig)_{ii'} &=
ho(s_i - s_{i'}; h_j), \quad
ho: ext{ correlation function} \end{aligned}$$

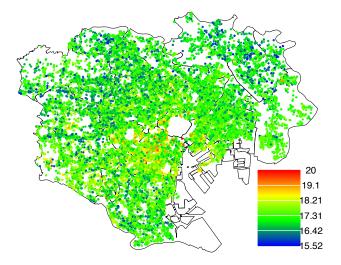
⇒ Use Markov Chain Monte Carlo algorithm for learning model weights

Real data example

Prediction of apartment house prices

- Prediction of apartment prices in 23 wards in Tokyo in 2017
- About 22,000 samples
 - ⇒ leave 2000 samples as test data
- Auxiliary information: characteristics of apartment (11 dimension) and location information (2 dimension)
- Models to be synthesized
 - Tokyo-level model : fit additive models for all the training samples
 - Ward-level mode: fit additive models ward-by-ward
 - Station-level model: fit linear regression station-by-station

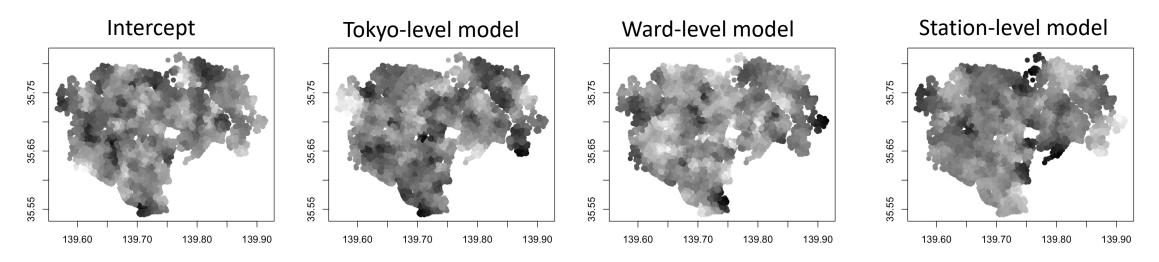
⇒ Synthesize the three models through BSPS



model size & sample size Large

Real data example

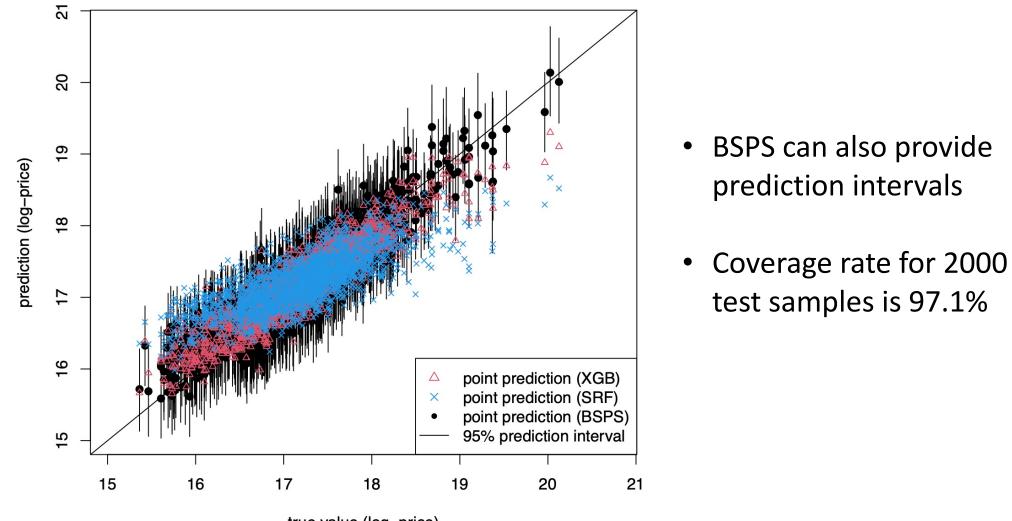
Model contribution



- Prediction accuracy (MSE of log-price of 2000 test samples)
 - (proposed) SBPS: 0.240
 - Gradient boosting tree: 0.257
 - Random forest: 0.424
 - Spatial regression: 0.268

- ✓ SBPS is highly interpretable
- Prediction process of tree boosting and random forest is complicated.

Real data example



true value (log-price)

Summary

Prediction synthesis is useful for real estate price prediction

- High accuracy & high interpretability
- Applicability of wide range of prediction problems

• Future works

- More scalable algorithm (which can handle 1 million observations)
- Develop R or Python package

• Working paper & code

- Cabel, D., Sugasawa, S., Kato, M., Takanashi, K. and McAlinn, K. (2022). Bayesian spatial predictive synthesis. *arXiv:2203.05197*
- R code: <u>https://github.com/sshonosuke/BSPS</u>

Shonosuke Sugasawa Email: sugasawa@econ.keio.ac.jp